
Batch processing machines are often the bottleneck in semiconductor manufacturing and their scheduling plays a key role in production management. Pioneer researches on multi-objective batch machines scheduling mainly focus on evolutionary algorithms, failing to meet the online scheduling demand. To deal with the challenges confronted by incompatible job families, dynamic job arrivals, capacitated machines and multiple objectives, we propose a clustering-aided multi-agent deep reinforcement learning approach (CA-MADRL) for the scheduling problem. Specifically, to achieve diverse nondominated solutions, an offline multi-objective scheduling algorithm named Multi-Subpopulation fast elitist Non-Dominated Sorting Genetic Algorithm (MS-NSGA-II) is firstly developed to obtain the Pareto Fronts, and a clustering algorithm based on cosine distance is employed to analyze the distribution of Pareto frontier solution, which would be used to guide reward functions design in multi-agent deep reinforcement learning. To realize multi-objective optimization, several reinforcement learning base models are trained for different optimization directions, each of which composed of batch forming agent and batch scheduling agent. To alleviate time complexity of model training, a parameter sharing strategy is introduced between different reinforcement learning base model. By validating the proposed approach with 16 instances designed based on actual production data from a semiconductor manufacturing company, it has been demonstrated that the approach not only meets the high-frequency scheduling requirements of manufacturing systems for parallel batch processing machines but also effectively reduces the total job tardiness and machine energy consumption.
Control engineering systems. Automatic machinery (General), TJ212-225, T1-995, Technology (General)
Control engineering systems. Automatic machinery (General), TJ212-225, T1-995, Technology (General)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
