Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Cork Open Research A...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Cork Open Research Archive (CORA)
Conference object . 2021
License: CC BY
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Cork Open Research Archive (CORA)
Conference object . 2022
License: CC BY
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1109/ictai5...
Article . 2021 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Automated SAT Problem Feature Extraction using Convolutional Autoencoders

Authors: Dalla, Marco; Visentin, Andrea; O'Sullivan, Barry;

Automated SAT Problem Feature Extraction using Convolutional Autoencoders

Abstract

The Boolean Satisfiability Problem (SAT) is the first known NP-complete problem and has a very broad literature focusing on it. It has been applied successfully to various realworld problems, such as scheduling, planning and cryptography. SAT problem feature extraction plays an essential role in this field. SAT solvers are complex, fine-tuned systems that exploit problem structure. The ability to represent/encode a large SAT problem using a compact set of features has broad practical use in instance classification, algorithm portfolios and solver configuration. The performance of these techniques relies on the ability of feature extraction to convey helpful information. Researchers often craft these features “by hand” to capture particular structures of the problem. Instead, in this paper, we extract features using semi-supervised deep learning. We train a Convolutional Autoencoder (AE) to compress the SAT problem in a limited latent space and reconstruct it minimizing the reconstruction error. The latent space projection should preserve much of the structural features of the problem. We compare our approach to a set of features commonly used for algorithm selection. Firstly, we train classifiers on the projection to predict if the problems are satisfiable or not. If the compression conveys valuable information, a classifier should be able to take correct decisions. In the second experiment, we check if the classifiers can identify the original problem that was encoded as SAT. The empirical analysis shows that the autoencoder is able to represent problem features in a limited latent space efficiently, as well as convey more information than current feature extraction methods.

Related Organizations
Keywords

CNF encoding, N-P complete problem, SAT problem, Feature extraction, Satisfiability prediction, Deep learning, Autoencoders, Boolean Satisfiability Problem (SAT), Boolean satisfiability, Convolutional autoencoders

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Average
Average
Average
Green