Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Institutional Knowle...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Transactions on Multimedia
Article
License: CC BY NC ND
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Multimedia
Article . 2015 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Landmark Classification With Hierarchical Multi-Modal Exemplar Feature

Authors: ZHU, Lei; SHEN, Jialie; JIN, Hai; XIE, Liang; ZHENG, Ran;

Landmark Classification With Hierarchical Multi-Modal Exemplar Feature

Abstract

Landmark image classification attracts increasing research attention due to its great importance in real applications, ranging from travel guide recommendation to 3-D modelling and visualization of geolocation. While large amount of efforts have been invested, it still remains unsolved by academia and industry. One of the key reasons is the large intra-class variance rooted from the diverse visual appearance of landmark images. Distinguished from most existing methods based on scalable image search, we approach the problem from a new perspective and model landmark classification as multi-modal categorization , which enjoys advantages of low storage overhead and high classification efficiency. Toward this goal, a novel and effective feature representation, called hierarchical multi-modal exemplar (HMME) feature, is proposed to characterize landmark images. In order to compute HMME, training images are first partitioned into the regions with hierarchical grids to generate candidate images and regions. Then, at the stage of exemplar selection, hierarchical discriminative exemplars in multiple modalities are discovered automatically via iterative boosting and latent region label mining. Finally, HMME is generated via a region-based locality-constrained linear coding (RLLC), which effectively encodes semantics of the discovered exemplars into HMME. Meanwhile, dimension reduction is applied to reduce redundant information by projecting the raw HMME into lower-dimensional space. The final HMME enjoys advantages of discriminative and linearly separable. Experimental study has been carried out on real world landmark datasets, and the results demonstrate the superior performance of the proposed approach over several state-of-the-art techniques.

Related Organizations
Keywords

Databases and Information Systems, exemplar selection, Computer Sciences, diverse visual contents, region-based locality-constrained linear coding (RLLC), landmark classification, hierarchical multi-modal exemplar feature (HMME), Dimension reduction

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    46
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
46
Top 10%
Top 10%
Top 10%
Green
hybrid