Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.48550/ar...
Article . 2025
License: CC BY SA
Data sources: Datacite
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Subset Sum in Near-Linear Pseudopolynomial Time and Polynomial Space

Authors: Sajith, Thejas Radhika;

Subset Sum in Near-Linear Pseudopolynomial Time and Polynomial Space

Abstract

Given a multiset $A = \{a_1, \dots, a_n\}$ of positive integers and a target integer $t$, the Subset Sum problem asks if there is a subset of $A$ that sums to $t$. Bellman's [1957] classical dynamic programming algorithm runs in $O(nt)$ time and $O(t)$ space. Since then, much work has been done to reduce both the time and space usage. Notably, Bringmann [SODA 2017] uses a two-step color-coding technique to obtain a randomized algorithm that runs in $\tilde{O}(n+t)$ time and $\tilde{O}(t)$ space. Jin, Vyas and Williams [SODA 2021] build upon the algorithm given by Bringmann, using a clever algebraic trick first seen in Kane's Logspace algorithm, to obtain an $\tilde{O}(nt)$ time and $\tilde{O}(\log(nt))$ space randomized algorithm. A SETH-based lower-bound established by Abboud et al. [SODA 2019] shows that Bringmann's algorithm is likely to have near-optimal time complexity. We build on the techniques used by Jin et al. to obtain a randomized algorithm running in $\tilde{O}(n+t)$ time and $\tilde{O}(n^2 + n \log^2 t)$ space, resulting in an algorithm with near-optimal runtime that also runs in polynomial space. We use a multipoint evaluation-based approach to speed up a bottleneck step in their algorithm. We also provide a simple polynomial space deterministic algorithm that runs in $\tilde{O}(n^2t)$ time and $\tilde{O}(n \log^2 t)$ space.

Error in the randomized algorithm; specifically, in Claim 3.4, where FFT is used at the leaf nodes, it is assumed that the polynomials have degree at most n (or that each polynomial can be converted to another polynomial with degree n, in \tilde{O}(n) time.)

Keywords

FOS: Computer and information sciences, Computational Complexity, Data Structures and Algorithms, Data Structures and Algorithms (cs.DS), Computational Complexity (cs.CC)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green