
Abstract Summary Lumbar spine bone mineral density (BMD) and trabecular bone score (TBS) are both calculated on L1-L4 vertebrae. This study investigated the ability to predict osteoporotic fractures of BMD and TBS as calculated based on all possible adjacent L1-L4 vertebrae combinations. Present findings indicate that L1-L3 is an optimal combination to calculate LS-BMD or TBS. Introduction Lumbar spine (LS) BMD and TBS are both assessed in the LS DXA scans in the same region of interest, L1-L4. We aimed to investigate the ability to predict osteoporotic fractures of all the possible adjacent LS vertebrae combinations used to calculate BMD and TBS and to evaluate if any of these combinations performs better at osteoporotic fracture prediction than the traditional L1-L4 combination. Methods This study was embedded in OsteoLaus-women cohort in Switzerland. LS-DXA scans were performed using Discovery A System (Hologic). The incident vertebral fractures (VFs) and major osteoporotic fractures (MOFs) were assessed from VF assessments using Genant’s method or questionnaires (non-VF MOF). We ran logistic models using TBS and BMD to predict MOF, VF, and non-VF MOF, combining different adjustment factors (age, fracture level, or BMD). Results One thousand six hundred thirty-two women (mean ± SD) 64.4 ± 7.5 years, BMI 25.9 ± 4.5 kg/m2, were followed for 4.4 years and 133 experienced MOF. The association of one SD decrease L1-L3 BMD with the odds ratios (ORs) of MOF was OR 1.32 (95%CI 1.15–1.53), L2-L4 BMD was 1.25 (95%CI 1.09–1.42), and L1-L4 BMD was 1.30 (95%CI 1.14–1.48). One SD decrease in L1-L3 TBS was more strongly associated with the odds of having a MOF (OR 1.64, 95% CI 1.34–2.00), than one SD decrease in L2-L4 TBS (OR 1.48, 95% CI 1.21–1.81), or in L1-L4 TBS (OR 1.60, CI 95% 1.32–1.95). Conclusion Current findings indicate that L1-L3 is an optimal combination for the TBS or LS-BMD calculation.
Absorptiometry, Photon, Lumbar Vertebrae, Bone Density, Cancellous Bone, Humans, Original Article, Female, Absorptiometry, Photon/methods; Bone Density; Cancellous Bone/diagnostic imaging; Female; Humans; Lumbar Vertebrae/diagnostic imaging; Osteoporotic Fractures/diagnostic imaging; Bone mineral density; DXA; Fracture risk assessment; Osteoporosis; Trabecular bone score, Osteoporotic Fractures
Absorptiometry, Photon, Lumbar Vertebrae, Bone Density, Cancellous Bone, Humans, Original Article, Female, Absorptiometry, Photon/methods; Bone Density; Cancellous Bone/diagnostic imaging; Female; Humans; Lumbar Vertebrae/diagnostic imaging; Osteoporotic Fractures/diagnostic imaging; Bone mineral density; DXA; Fracture risk assessment; Osteoporosis; Trabecular bone score, Osteoporotic Fractures
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 15 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
