Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Molecular...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Molecular Neuroscience
Article . 2024 . Peer-reviewed
License: Springer Nature TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Integrating Multi-omics Data for Alzheimer’s Disease to Explore Its Biomarkers Via the Hypergraph-Regularized Joint Deep Semi-Non-Negative Matrix Factorization Algorithm

Authors: Kun, Tu; Wenhui, Zhou; Shubing, Kong;

Integrating Multi-omics Data for Alzheimer’s Disease to Explore Its Biomarkers Via the Hypergraph-Regularized Joint Deep Semi-Non-Negative Matrix Factorization Algorithm

Abstract

Alzheimer's disease (AD) is a progressive and irreversible neurodegenerative disorder. Its etiology may be associated with genetic, environmental, and lifestyle factors. With the advancement of technology, the integration of genomics, transcriptomics, and imaging data related to AD allows simultaneous exploration of molecular information at different levels and their interaction within the organism. This paper proposes a hypergraph-regularized joint deep semi-non-negative matrix factorization (HR-JDSNMF) algorithm to integrate positron emission tomography (PET), single-nucleotide polymorphism (SNP), and gene expression data for AD. The method employs matrix factorization techniques to nonlinearly decompose the original data at multiple layers, extracting deep features from different omics data, and utilizes hypergraph mining to uncover high-order correlations among the three types of data. Experimental results demonstrate that this approach outperforms several matrix factorization-based algorithms and effectively identifies multi-omics biomarkers for AD. Additionally, single-cell RNA sequencing (scRNA-seq) data for AD were collected, and genes within significant modules were used to categorize different types of cell clusters into high and low-risk cell groups. Finally, the study extensively explores the differences in differentiation and communication between these two cell types. The multi-omics biomarkers unearthed in this study can serve as valuable references for the clinical diagnosis and drug target discovery for AD. The realization of the algorithm in this paper code is available at https://github.com/ShubingKong/HR-JDSNMF .

Related Organizations
Keywords

Alzheimer Disease, Humans, Cell Differentiation, Multiomics, Algorithms, Biomarkers

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Top 10%
Average
Average
Related to Research communities
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!