Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Online Bengali handwritten numerals recognition using Deep Autoencoders

Authors: Arghya Pal; B. K. Khonglah; S. Mandal; Himakshi Choudhury; S. R. M. Prasanna; H. L. Rufiner; Vineeth N Balasubramanian;

Online Bengali handwritten numerals recognition using Deep Autoencoders

Abstract

This work describes the development of online handwritten isolated Bengali numerals using Deep Autoencoder (DA) based on Multilayer perceptron (MLP) [1]. Autoencoders capture the class specific information and the deep version uses many hidden layers and a final classification layer to accomplish this. DA based on MLP uses the MLP training approach for its training. Different configurations of the DA are examined to find the best DA classifier. Then an optimization technique have been adopted to reduce the overall weight space of the DA based on MLP that in turn makes it suitable for a real time application. The performance of the DA based system is compared with systems constructed using Hidden Markov Model (HMM) and Support Vector Machine (SVM). The confusion matrices of DA, HMM and SVM are analyzed in order to make a hybrid numeral recognizer system. It is found that hybrid system gives better performance than each of the individual systems, where the average recognition performances of DA, HMM and SVM systems are 97.74%, 97.5% and 98.14%, respectively and hybrid system gives a performance of 99.18%.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!