Downloads provided by UsageCounts
doi: 10.1115/1.4053150
handle: 20.500.14243/441603 , 10985/22962
Abstract This paper introduces a novel reverse engineering (RE) technique for the reconstruction of editable computer-aided design (CAD) models of mechanical parts’ assemblies. The input is a point cloud of a mechanical parts’ assembly that has been acquired as a whole, i.e., without disassembling it prior to its digitization. The proposed framework allows for the reconstruction of the parametric CAD assembly model through a multi-step reconstruction and fitting approach. It is modular and it supports various exploitation scenarios depending on the available data and starting point. It also handles incomplete datasets. The reconstruction process starts from roughly sketched and parameterized CAD geometries (i.e., 2D sketches, 3D parts, or assemblies) that are then used as input of a simulated annealing-based fitting algorithm, which minimizes the deviation between the point cloud and the adapted geometries. The coherence of the CAD models is maintained by a CAD modeler that performs the geometries’ updates while guaranteeing the possibly imposed constraints and model coherence. The optimization process leverages a two-level filtering technique able to capture and manage the boundaries of the geometries inside the overall point cloud in order to allow local fitting and interfaces detection. It is a user-driven approach where the user decides what are the most suitable steps and sequence to operate. It has been tested and validated on both real scanned point clouds and as-scanned virtually generated point clouds incorporating several artifacts that would appear with real acquisition devices.
reverse engineering, editable CAD assemblies, CAD assembly models reconstruction, segmentation, data-driven engineering, Sciences de l'ingénieur: Mécanique: Génie mécanique, Computer Graphics and Computer-Aided Design, computer-aided engineering, Industrial and Manufacturing Engineering, point cloud filtering, Computer Science Applications, reverse engineering, n/a, data driven engineering, 2D and 3D fitting, [SPI.MECA.GEME] Engineering Sciences [physics]/Mechanics [physics.med-ph]/Mechanical engineering [physics.class-ph], Software
reverse engineering, editable CAD assemblies, CAD assembly models reconstruction, segmentation, data-driven engineering, Sciences de l'ingénieur: Mécanique: Génie mécanique, Computer Graphics and Computer-Aided Design, computer-aided engineering, Industrial and Manufacturing Engineering, point cloud filtering, Computer Science Applications, reverse engineering, n/a, data driven engineering, 2D and 3D fitting, [SPI.MECA.GEME] Engineering Sciences [physics]/Mechanics [physics.med-ph]/Mechanical engineering [physics.class-ph], Software
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 4 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
| views | 163 | |
| downloads | 102 |

Views provided by UsageCounts
Downloads provided by UsageCounts