Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IEEE Accessarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2025 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2025
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Automated Defect Detection in Solar Cell Images Using Deep Learning Algorithms

Authors: Montaser Abdelsattar; Ahmed Abdelmoety; Mohamed A. Ismeil; Ahmed Emad-Eldeen;

Automated Defect Detection in Solar Cell Images Using Deep Learning Algorithms

Abstract

This research study introduces a unique method that makes use of a wide range of deep learning (DL) techniques for automated flaw identification in solar cell images. The research paper investigates how well 24 distinct convolutional neural network (CNN) architectures— Residual network (ResNet), densely connected convolutional networks (DenseNet), visual geometry group (VGG), Inception, mobile network (MobileNet), Xception, SqueezeNet, and AlexNet—classify solar cells into defected and non-defective categories. This study is interesting since it does a thorough assessment of a wide variety of models and concentrates on high-performance architectures and lightweight models that may be used in contexts with limited resources. The research paper performed our studies using a balanced and well-curated dataset of 3,102 images of solar cells with a range of common faults. MobileNetV2 and Xception demonstrated excellent performance in defect identification, with accuracy rates of 99.95% and 99.29% respectively, with minimal validation losses. This study demonstrates the potential of efficient models such as MobileNetV2 for real-world use in solar energy generation. It also provides a detailed comparison of several DL models. The results suggest that the inclusion of these models might significantly enhance quality control systems, offering a reliable and efficient method for detecting flaws in solar cells.

Keywords

photovoltaics, defect detection, deep learning, Computer vision, Electrical engineering. Electronics. Nuclear engineering, image classification, TK1-9971

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Top 10%
Average
Average
gold
Related to Research communities