Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Shock and Vibrationarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Shock and Vibration
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Shock and Vibration
Article . 2023
Data sources: DOAJ
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Mine Microseismic Signal Denoising Based on a Deep Convolutional Autoencoder

Authors: Ting Hu; Bin Xu; Yongfa Wang; Jiayi Zhu; Jiang Zhou; Zhongyi Wan;

Mine Microseismic Signal Denoising Based on a Deep Convolutional Autoencoder

Abstract

Mine microseismic signal denoising is a basic and crucial link in microseismic data processing, which influences the accuracy and reliability of the monitoring system, and is of great significance with regard to safety during mining. Therefore, this study introduces a deep learning method to improve the mapping function and sparsity of signals in the time-frequency domain and constructs a denoising framework based on a deep convolutional autoencoder to address the denoising problem of mine microseismic signals. First, all noisy microseismic signals are normalized to ensure the nonlinear expression ability of the constructed denoising framework. Then, the normalized signals are transformed into the time-frequency domain using the short-time Fourier transform (STFT), and the real and imaginary parts of time-frequency coefficients serve as the input of the deep convolutional autoencoder to output the masks of the effective and noise signals. Next, these masks are applied to the time-frequency coefficients of the noisy microseismic signals, and the time-frequency coefficients of the potentially effective and noise signals are estimated. Finally, inverse STFT is used to transform these time-frequency coefficients to the time domain to obtain the final denoised effective and noise signals. The constructed framework automatically learns rich features from synthetic data to separate the effective and noise signals, thereby achieving the purpose of fast and automatic denoising. The experimental results show that compared with the wavelet threshold and ensemble empirical mode decomposition, the denoising framework considerably improves the signal-to-noise ratio of mine microseismic signals with less waveform distortion. Moreover, it can achieve a better denoising effect efficiently even in the case of a low SNR, which has obvious advantages. The constructed denoising framework is suitable for microseismic monitoring signals of various mine dynamic disasters and provides strong technical support for intelligent monitoring and early warning concerning production risks in mines.

Related Organizations
Keywords

Physics, QC1-999

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
gold