
Abstract Background Functional lung MRI techniques are usually associated with time-consuming post-processing, where manual lung segmentation represents the most cumbersome part. The aim of this study was to investigate whether deep learning-based segmentation of lung images which were scanned by a fast UTE sequence exploiting the stack-of-spirals trajectory can provide sufficiently good accuracy for the calculation of functional parameters. Methods In this study, lung images were acquired in 20 patients suffering from cystic fibrosis (CF) and 33 healthy volunteers, by a fast UTE sequence with a stack-of-spirals trajectory and a minimum echo-time of 0.05 ms. A convolutional neural network was then trained for semantic lung segmentation using 17,713 2D coronal slices, each paired with a label obtained from manual segmentation. Subsequently, the network was applied to 4920 independent 2D test images and results were compared to a manual segmentation using the Sørensen–Dice similarity coefficient (DSC) and the Hausdorff distance (HD). Obtained lung volumes and fractional ventilation values calculated from both segmentations were compared using Pearson’s correlation coefficient and Bland Altman analysis. To investigate generalizability to patients outside the CF collective, in particular to those exhibiting larger consolidations inside the lung, the network was additionally applied to UTE images from four patients with pneumonia and one with lung cancer. Results The overall DSC for lung tissue was 0.967 ± 0.076 (mean ± standard deviation) and HD was 4.1 ± 4.4 mm. Lung volumes derived from manual and deep learning based segmentations as well as values for fractional ventilation exhibited a high overall correlation (Pearson’s correlation coefficent = 0.99 and 1.00). For the additional cohort with unseen pathologies / consolidations, mean DSC was 0.930 ± 0.083, HD = 12.9 ± 16.2 mm and the mean difference in lung volume was 0.032 ± 0.048 L. Conclusions Deep learning-based image segmentation in stack-of-spirals based lung MRI allows for accurate estimation of lung volumes and fractional ventilation values and promises to replace the time-consuming step of manual image segmentation in the future.
ddc:610, Image segmentation, Lung Neoplasms, Cystic Fibrosis, Research, Respiration, Deep learning, Pneumonia, Lung Neoplasms/diagnostic imaging [MeSH] ; Deep Learning [MeSH] ; Humans [MeSH] ; MRI ; Lung/diagnostic imaging [MeSH] ; Lung ; Lung/physiology [MeSH] ; Neural Networks, Computer [MeSH] ; Respiration [MeSH] ; Image segmentation ; Pneumonia/diagnostic imaging [MeSH] ; Research ; Cystic Fibrosis/physiopathology [MeSH] ; Case-Control Studies [MeSH] ; Magnetic Resonance Imaging/methods [MeSH] ; Cystic Fibrosis/diagnostic imaging [MeSH] ; Deep learning, Magnetic Resonance Imaging, Deep Learning, Case-Control Studies, Medical technology, Humans, Neural Networks, Computer, R855-855.5, Lung, MRI
ddc:610, Image segmentation, Lung Neoplasms, Cystic Fibrosis, Research, Respiration, Deep learning, Pneumonia, Lung Neoplasms/diagnostic imaging [MeSH] ; Deep Learning [MeSH] ; Humans [MeSH] ; MRI ; Lung/diagnostic imaging [MeSH] ; Lung ; Lung/physiology [MeSH] ; Neural Networks, Computer [MeSH] ; Respiration [MeSH] ; Image segmentation ; Pneumonia/diagnostic imaging [MeSH] ; Research ; Cystic Fibrosis/physiopathology [MeSH] ; Case-Control Studies [MeSH] ; Magnetic Resonance Imaging/methods [MeSH] ; Cystic Fibrosis/diagnostic imaging [MeSH] ; Deep learning, Magnetic Resonance Imaging, Deep Learning, Case-Control Studies, Medical technology, Humans, Neural Networks, Computer, R855-855.5, Lung, MRI
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 16 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
