
Dans ce travail, nous présentons des techniques de facteur d'oubli variable (VFF) de faible complexité pour les algorithmes de diffusion par moindres carrés récursifs (DRL). En particulier, nous proposons des algorithmes VFF-DRLS de faible complexité pour l'estimation distribuée des paramètres et du spectre dans les réseaux de capteurs. Pour les algorithmes proposés, ils peuvent ajuster automatiquement le facteur d'oubli en fonction du signal d'erreur a posteriori. Nous développons des analyses détaillées en termes de performances quadratiques moyennes et moyennes pour les algorithmes proposés et dérivons des expressions mathématiques pour l'écart quadratique moyen (MSD) et l'erreur quadratique moyenne excessive (EMSE). Les résultats de simulation montrent que les algorithmes VFF-DRLS à faible complexité proposés atteignent des performances supérieures à l'algorithme DRLS existant avec un facteur d'oubli fixe lorsqu'ils SONT appliqués à des scénarios d'estimation de paramètres distribués et de spectre. En outre, les résultats de simulation démontrent également une bonne correspondance avec nos expressions analytiques proposées.
En este trabajo, presentamos técnicas de factor de olvido de variables de baja complejidad (VFF) para algoritmos de mínimos cuadrados recursivos de difusión (DRL). En particular, proponemos algoritmos VFF-DRLS de baja complejidad para la estimación distribuida de parámetros y espectros en redes de sensores. Para los algoritmos propuestos, pueden ajustar el factor de olvido automáticamente de acuerdo con la señal de error a posteriori. Desarrollamos análisis detallados en términos de rendimiento cuadrático medio y medio para los algoritmos propuestos y derivamos expresiones matemáticas para la desviación cuadrática media (MSD) y el exceso de error cuadrático medio (EMSE). Los resultados de la simulación muestran que los algoritmos VFF-DRLS de baja complejidad propuestos logran un rendimiento superior al algoritmo DRLS existente con factor de olvido fijo cuando se aplican a escenarios de estimación de parámetros y espectros distribuidos. Además, los resultados de la simulación también demuestran una buena coincidencia con nuestras expresiones analíticas propuestas.
In this work, we present low-complexity variable forgetting factor (VFF) techniques for diffusion recursive least squares (DRLS) algorithms. Particularly, we propose low-complexity VFF-DRLS algorithms for distributed parameter and spectrum estimation in sensor networks. For the proposed algorithms, they can adjust the forgetting factor automatically according to the posteriori error signal. We develop detailed analyses in terms of mean and mean square performance for the proposed algorithms and derive mathematical expressions for the mean square deviation (MSD) and the excess mean square error (EMSE). The simulation results show that the proposed low-complexity VFF-DRLS algorithms achieve superior performance to the existing DRLS algorithm with fixed forgetting factor when applied to scenarios of distributed parameter and spectrum estimation. Besides, the simulation results also demonstrate a good match for our proposed analytical expressions.
في هذا العمل، نقدم تقنيات عامل النسيان المتغير منخفض التعقيد (VFF) لخوارزميات المربعات الصغرى المتكررة للانتشار (DRLS). على وجه الخصوص، نقترح خوارزميات VFF - DRLS منخفضة التعقيد للمعلمات الموزعة وتقدير الطيف في شبكات المستشعرات. بالنسبة للخوارزميات المقترحة، يمكنهم ضبط عامل النسيان تلقائيًا وفقًا لإشارة الخطأ الخلفية. نقوم بتطوير تحليلات مفصلة من حيث متوسط الأداء المربع ومتوسط الأداء المربع للخوارزميات المقترحة واشتقاق التعبيرات الرياضية لمتوسط الانحراف المربع (MSD) والخطأ المربع المتوسط الزائد (EMSE). تُظهر نتائج المحاكاة أن خوارزميات VFF - DRLS منخفضة التعقيد المقترحة تحقق أداءً متفوقًا على خوارزمية DRLS الحالية مع عامل نسيان ثابت عند تطبيقها على سيناريوهات المعلمات الموزعة وتقدير الطيف. إلى جانب ذلك، تُظهر نتائج المحاكاة أيضًا تطابقًا جيدًا مع تعبيراتنا التحليلية المقترحة.
Adaptive filter, Sensor networks, Blind Source Separation and Independent Component Analysis, TK7800-8360, Variable forgetting factor, Computational Mechanics, TK5101-6720, Distributed Estimation, Mathematical analysis, Diffusion, Engineering, Forgetting, Adaptive Filtering in Non-Gaussian Signal Processing, FOS: Mathematics, Distributed spectrum estimation, Recursive least squares filter, Speech Enhancement Techniques, Variable (mathematics), Factor (programming language), Variable Step-Size Algorithms, Sparse System Identification, Physics, Diffusion Strategies, Linguistics, Distributed parameter estimation, Computer science, FOS: Philosophy, ethics and religion, Programming language, Algorithm, Diffusion recursive least-squares, Philosophy, Robust Adaptive Filtering, Physical Sciences, Signal Processing, Computer Science, Telecommunication, FOS: Languages and literature, Thermodynamics, Electronics, Mathematics
Adaptive filter, Sensor networks, Blind Source Separation and Independent Component Analysis, TK7800-8360, Variable forgetting factor, Computational Mechanics, TK5101-6720, Distributed Estimation, Mathematical analysis, Diffusion, Engineering, Forgetting, Adaptive Filtering in Non-Gaussian Signal Processing, FOS: Mathematics, Distributed spectrum estimation, Recursive least squares filter, Speech Enhancement Techniques, Variable (mathematics), Factor (programming language), Variable Step-Size Algorithms, Sparse System Identification, Physics, Diffusion Strategies, Linguistics, Distributed parameter estimation, Computer science, FOS: Philosophy, ethics and religion, Programming language, Algorithm, Diffusion recursive least-squares, Philosophy, Robust Adaptive Filtering, Physical Sciences, Signal Processing, Computer Science, Telecommunication, FOS: Languages and literature, Thermodynamics, Electronics, Mathematics
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 10 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
