Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Electrica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Electrical and Computer Engineering
Article . 2021 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.60692/04...
Other literature type . 2021
Data sources: Datacite
https://dx.doi.org/10.60692/0a...
Other literature type . 2021
Data sources: Datacite
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Design and Implementation of Nanotechnology QCA Geometric Greedy Router

تصميم وتنفيذ راوتر الجشع الهندسي QCA لتقنية النانو
Authors: Lamjed Touil; Ismail Gassoumi; Abdellatif Mtibaa;

Design and Implementation of Nanotechnology QCA Geometric Greedy Router

Abstract

This paper presents an optimized geometric greedy router (GGR) based on quantum dot cellular automata (QCA) technology. The proposed structure of GGR is based on a spanning tree of the network. This type of communication does not require an IP address. It uses only local information and can be used in many communication devices. In this paper, we first describe the principal components of the router and then we present their QCA architecture. The QCA technology is the most likely alternative to replace conventional circuits (CMOS) due to their very low power consumption and high processing speed. To consider integration with other complex circuit, we have utilized QCA clock-phase-based technique for the proposed design architecture. The results obtained using the QCA designer tool exhibit the superiority of the presented architecture over the existing designs. The proposed structure shows a reduction of 30% reduction in occupied space. The power dissipation rate of the proposed design is analyzed by QCAPro tool to approve its reliability.

Related Organizations
Keywords

Computer engineering. Computer hardware, Memristive Devices for Neuromorphic Computing, Geometry, Electronic circuit, DNA Nanotechnology and Bioanalytical Applications, Quantum dot cellular automaton, TK7885-7895, Engineering, Biochemistry, Genetics and Molecular Biology, FOS: Electrical engineering, electronic engineering, information engineering, FOS: Mathematics, Electrical and Electronic Engineering, Molecular Biology, Cellular automaton, Computer network, Electronic engineering, Router, CMOS, Life Sciences, Computer science, Algorithm, Computational Theory and Mathematics, Electrical engineering, Computer Science, Physical Sciences, Design and Simulation of Quantum-dot Cellular Automata, Reduction (mathematics), Quantum-dot Cellular Automata, Mathematics

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Top 10%
Average
Average
gold