Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Multiobjective quantum-inspired evolutionary algorithm for fuzzy path planning of mobile robot

Authors: Ye-Hoon Kim; Jong-Hwan Kim;

Multiobjective quantum-inspired evolutionary algorithm for fuzzy path planning of mobile robot

Abstract

This paper proposes a multiobjective quantum-inspired evolutionary algorithm (MQEA) to design efficient fuzzy path planner of mobil robot. MQEA employs the probabilistic mechanism inspired by the concept and principles of quantum computing. As the probabilistic individuals are updated by referring to nondominated solutions in the archive, population converges to Pareto-optimal solution set. In order to evaluate the performance of proposed MQEA, robot soccer system is utilized as a mobile robot system. Three objectives such as elapsed time, heading direction and posture angle errors are designed to obtain robust fuzzy path planner in the robot soccer system. Simulation results show the effectiveness of the proposed MQEA from the viewpoint of the proximity to the Pareto-optimal set. Moreover, various trajectories by the obtained solutions from the proposed MQEA are shown to verify the performance and to see its applicability.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    20
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
20
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!