
arXiv: 2106.07996
Abstract Reconfigurable intelligent surface (RIS)‐empowered communications is on the rise and is a promising technology envisioned to aid in 6G and beyond wireless communication networks. RISs can manipulate impinging waves through their electromagnetic elements enabling some sort of control over the wireless channel. The potential of RIS technology is explored to perform a sort of virtual equalization over‐the‐air for frequency‐selective channels, whereas equalization is generally conducted at either the transmitter or receiver in conventional communication systems. Specifically, using an RIS, the frequency‐selective channel from the transmitter to the RIS is transformed to a frequency‐flat channel through elimination of inter‐symbol interference (ISI) components at the receiver. ISI is eliminated by adjusting the phases of impinging signals particularly to maximize the incoming signal of the strongest tap. First, a general end‐to‐end system model is provided and a continuous to discrete‐time signal model is presented. Subsequently, a probabilistic analysis for elimination of ISI terms is conducted and reinforced with computer simulations. Furthermore, a theoretical error probability analysis is performed along with computer simulations. It is analysed and demonstrated that conventional RIS phase alignment methods can successfully eliminate ISI, and the RIS‐aided communication channel can be converted from frequency‐selective to frequency‐flat.
Error statistics (inc. error probability), Signal Processing (eess.SP), FOS: Computer and information sciences, Modulation and coding methods, Radio links and equipment, Computer Science - Information Theory, Information Theory (cs.IT), Signal processing and detection, TK5101-6720, Electromagnetic compatibility and interference, Telecommunication, FOS: Electrical engineering, electronic engineering, information engineering, Electrical Engineering and Systems Science - Signal Processing, Artificial electromagnetic wave materials and structures
Error statistics (inc. error probability), Signal Processing (eess.SP), FOS: Computer and information sciences, Modulation and coding methods, Radio links and equipment, Computer Science - Information Theory, Information Theory (cs.IT), Signal processing and detection, TK5101-6720, Electromagnetic compatibility and interference, Telecommunication, FOS: Electrical engineering, electronic engineering, information engineering, Electrical Engineering and Systems Science - Signal Processing, Artificial electromagnetic wave materials and structures
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 24 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
