
The contemporary manufacturing systems face a challenging and uncertain future due to frequent customer demands for customized products. A promising direction that can enable manufacturing systems to fulfill the market requirements is the adaptation of a reconfigurable manufacturing system paradigm. Physical reconfigurability can be achieved by developing systems that can satisfy conflicting production priorities such as minimal production time and maximal profit. Having that in mind, in this paper, the authors present a comprehensive analysis of population-based multi-objective optimization algorithms utilized for scheduling manufacturing entities. The output of multi-objective optimization is a set of Pareto optimal solutions in the form of production scheduling plans with transportation constraints. Three state-of-the-art population-based algorithms i.e., Genetic Algorithm (GA), Particle Swarm Optimization (PSO), and Whale Optimization Algorithm (WOA), are employed for optimization, while the experimental results show the effectiveness and superiority of the WOA algorithm.
Multi-objective optimization, Population-based algorithms, Manufacturing resources scheduling
Multi-objective optimization, Population-based algorithms, Manufacturing resources scheduling
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
