Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Zaporozhye Medical J...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Zaporozhye Medical Journal
Article . 2020 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Zaporozhye Medical Journal
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Zaporozhye Medical Journal
Article . 2020
Data sources: DOAJ
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Screening study of new thiazolidinone derivatives for anticonvulsant activity

Authors: Mishchenko, M. V.; Shtrygol, S. Yu.; Lesyk, R. B.; Lozynskyi, A. V.; Holota, S. M.;

Screening study of new thiazolidinone derivatives for anticonvulsant activity

Abstract

The search for new antiepileptic drugs that would have greater margins of safety and fewer adverse effects is relevant. Thiazolidinone are a promising class for the development of new anticonvulsants. Aim. To conduct a screening study of new thiazolidinone derivatives for anticonvulsant activity on a seizure model induced by pentylenetetrazole and maximal electroshock; to analyze the structure – activity relationship; to reveal a lead-compound and investigate its dose-dependent manner. Materials and methods. Basic screening seizure models of pentylenetetrazol and maximal electroshock test were used in mice. The test original 9 thiazolidinone derivatives (100 mg/kg) and the reference drugs of sodium valproate (300 mg/kg), carbamazepine (40 mg/kg) were administered intragastrically 30 minutes before subcutaneous administration of pentylenetetrazol (90 mg/kg) or induction with maximal electroshock by giving a current with strength of 50 mA and frequency of 50 Hz for 0.2 s. In order to study the dose-dependent manner, the lead-compound was administered intragastrically in doses ranging from 25 mg/kg to 150 mg/kg. Results. A total of 9 compounds were studied, of which 3 did not affect experimental convulsions, 2 showed proconvulsive activity, and 4 had an anticonvulsant effect. The lead-compound 5-[(Z)-(4-nitrobenzylidene)]-2-(thiazol-2-ylimino)-4-thiazolidinone was determined under laboratory code Les-6222, which exhibited the highest anticonvulsant properties. The “structure–anticonvulsant activity” relationship in a series of thiazolidinone derivatives was analyzed. The dose-dependent manner of 5-[(Z)-(4-nitrobenzylidene)]-2-(thiazol-2-ylimino)-4-thiazolidinone anticonvulsant effect was studied using 2 seizure models, and the most effective dose of 100 mg / kg was identified. Conclusions. 5-[(Z)-(4-nitrobenzylidene)]-2-(thiazol-2-ylamino)-4-thiazolidinone is a promising compound for in-depth studies on anticonvulsant and related pharmacological activities in order to develop new original anticonvulsants.

Keywords

протиепілептичні засоби, производные тиазолидинона, R, епілепсія, похідні тіазолідинону, эпилепсия, противоэпилептические средства, epilepsy, Medicine, antiepileptic drugs, thiazolidinone derivatives

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
gold