Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Geodesyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Geodesy
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Research Collection
Article . 2024
License: CC BY
Journal of Geodesy
Article . 2024 . Peer-reviewed
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

GNSS signal ray-tracing algorithm for the simulation of satellite-to-satellite excess phase in the neutral atmosphere

Authors: Adam Cegla; Witold Rohm; Gregor Moeller; Paweł Hordyniec; Estera Trzcina; Natalia Hanna;

GNSS signal ray-tracing algorithm for the simulation of satellite-to-satellite excess phase in the neutral atmosphere

Abstract

AbstractTraditionally, GNSS space-based and ground-based estimates of tropospheric conditions are performed separately. It leads to limitations in the horizontal (e.g., a single space-based radio occultation profile covers a 300 km slice of the troposphere) and vertical resolution (e.g., ground-based estimates of troposphere conditions have spacing equal to stations’ distribution) of the tropospheric products. The first stage to achieve an integrated model is to create an effective 3D ray-tracing algorithm for the satellite-to-satellite (radio occultation) path reconstruction. We verify the consistency of the simulated data with the RO observations from the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC-1) Data Analysis and Archive Center (CDAAC) in terms of excess phase and bending angle. The results show that our solution provides an effective RO excess phase, with a relative error varying from 35% at the height of 25–30 km (1.0–1.5 m) to 0.5% at heights 5–10 km (0.1–1 m) and 14 to 2% at heights below 5 km (2–14 m). The bending angle retrieval on simulated data attained for high-resolution ray-tracing, bias lower than 2% with respect to the observed bending angle. The optimal solution takes about 1 s for one transmitter–receiver pair with a tangent point below 5 km altitude. The high-resolution processing solution takes 3 times longer.

Keywords

COSMIC-1, 3D ray-tracing, 3D ray-tracing; Radio occultation; COSMIC-1; ERA5, ERA5, Radio occultation

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Top 10%
Average
Average
Green
hybrid