Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IEEE Accessarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2023 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2023
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A Multi-Objective Optimization Approach Based on an Enhanced Particle Swarm Optimization Algorithm With Evolutionary Game Theory

Authors: Kaiyang Yin; Biwei Tang; Ming Li; Huanli Zhao;

A Multi-Objective Optimization Approach Based on an Enhanced Particle Swarm Optimization Algorithm With Evolutionary Game Theory

Abstract

Due to conflicts among objectives of multi-objective optimization (MO) problems, it remains challenging to gain high-quality Pareto fronts for different MO issues. Attempt to handle this challenge and obtain high-performance Pareto fronts, this paper proposes a novel MO optimizer via leveraging particle swarm optimization (PSO) with evolutionary game theory (EGT). Firstly, a modified self-adaptive PSO (MSAPSO) adopting a novel self-adaptive parameter adaption rule determined by the evolutionary strategy of EGT to tune the three key parameters of each particle is proposed in order to well balance the exploration and exploitation abilities of MSAPSO. Then, a parameter selection principle is provided to sufficiently guarantee convergence of MSAPSO followed after the analytical convergence investigation of this optimizer so as to assure convergence of the searched Pareto front toward the true Pareto front as far as possible. Subsequently, a MSAPSO-based MO optimizer is developed, in which an external archive is applied to preserve the searched non-dominated solutions and a circular sorting method is amalgamated with the elitist-saving method to update the external archive. Lastly, the performance of the proposed method is examined by 16 benchmark test functions against 4 well-known MOO methods. The simulation results reveal that the proposed method dominates its peers regarding the quality of the Pareto fronts for most of the studied benchmarks. Furthermore, the results of the non-parametric analysis confirm that the proposed method significantly outperforms its contenders at the confidential level of 95% over the 16 benchmarks.

Related Organizations
Keywords

Multi-objective optimization, pareto front, particle swarm optimization, convergence investigation, Electrical engineering. Electronics. Nuclear engineering, evolutionary game theory, TK1-9971

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Top 10%
Average
Average
gold