Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://arrow.tudubl...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://arrow.tudublin.ie/cgi/...
Article
License: CC BY NC SA
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Arrow@TU Dublin
Conference object . 2018
Data sources: Arrow@TU Dublin
https://doi.org/10.1109/issc.2...
Article . 2018 . Peer-reviewed
Data sources: Crossref
TU Dublin Research Portal
Conference object . 2018
License: CC BY NC SA
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Block-based Classification Method for Computer Screen Image Compression

Authors: Wu, Kai; Gahan, Richard; O'Friel, Patrick;

Block-based Classification Method for Computer Screen Image Compression

Abstract

In this paper, a high accuracy and reduced processing time block based classification method for computer screen images is presented. This method classifies blocks into five types: smooth, sparse, fuzzy, text and picture blocks. In a computer screen compression application, the choice of block compression algorithm is made based on these block types. The classification method presented has four novel features. The first novel feature is a combination of Discrete Wavelet Transform (DWT) and colour counting classification methods. Both of these methods have only been used for computer image compression in isolation in previous publications but this paper shows that combined together more accurate results are obtained overall. The second novel feature is the classification of the image blocks into five block types. The addition of the fuzzy and sparse block types make the use of optimum compression methods possible for these blocks. The third novel feature is block type prediction. The prediction algorithm is applied to a current block when the blocks on the top and the left of the current block are text blocks or smooth blocks. This new algorithm is designed to exploit the correlation of adjacent blocks and reduces the overall classification processing time by 33%. The fourth novel feature is down sampling of the pixels in each block which reduces the classification processing time by 62%. When both block prediction and down sampling are enabled, the classification time is reduced by 74% overall. The overall classification accuracy is 98.46%.

Country
Ireland
Keywords

accuracy, block-based classification, Compound image, Electrical and Computer Engineering, block type prediction, classification time

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green