Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Archivio della ricer...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Signal Processing
Article . 2010 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Cooperative Randomized MIMO-OFDM Downlink for Multicell Networks: Design and Analysis

Authors: VERDE, FRANCESCO; D. Darsena; A. Scaglione;

Cooperative Randomized MIMO-OFDM Downlink for Multicell Networks: Design and Analysis

Abstract

This paper proposes a low-complexity physical (PHY) layer design to introduce cooperation in the downlink of an infrastructure-based multicell multiple-input multiple-output (MIMO) orthogonal frequency-division multiplexing (OFDM) network, aimed at supporting future high-throughput broadband wireless Internet access with large-scale coverage. In such a system, several multiantenna base stations (BSs) are organized in a cellular architecture to serve multiantenna mobile stations (MSs) and are connected to a central service unit via a high-speed wired backbone. To improve the network performance, a novel PHY layer design is proposed that allows cooperation among an arbitrary and unknown number of BSs by suitably randomizing the MIMO-OFDM block codes used by the BSs. Such a randomized MIMO-OFDM code renders the encoding/decoding rule independent of the number of actual BSs cooperating and works without any channel feedback, which greatly simplifies the protocol as well as the MS design. To provide performance insights and develop PHY layer designs, this paper provides analytical upper bounds on the symbol error probability for linear receivers, which allow to accurately evaluate the diversity order and the coding gain achievable through the proposed scheme. Lastly, we present numerical results that validate the theory, and highlight the performance gain and the coverage expansion attainable with our cooperative transceiver.

Keywords

Infrastructured multicell networks, Multiple-input multiple-output orthogonal frequency-division multiplexing (MIMO-OFDM) technology, Cooperative downlink; Infrastructured multicell networks; Minimum mean-square error (MMSE) linear decoding; Multiple-input multiple-output orthogonal frequency-division multiplexing (MIMO-OFDM) technology; Physical (PHY) layer design; Randomized space-time block coding (STBC), Physical (PHY) layer design, Cooperative downlink, Randomized space-time block coding (STBC), Minimum mean-square error (MMSE) linear decoding

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    21
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
21
Average
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!