Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Electronic Archive o...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

1D CNN model for ECG diagnosis based on several classifiers

1D модель CNN для діагностики ЕКГ на кількох класифікаторах
Authors: Mahmoud Bassiouni; Islam Hegazy; Nouhad Rizk; El-Sayed El-Dahshan; Abdelbadeeh Salem;

1D CNN model for ECG diagnosis based on several classifiers

Abstract

One of the main reasons for human death is diseases caused by the heart. Detecting heart diseases in the early stage can stop heart failure or any damage related to the heart muscle. One of the main signals that can be beneficial in the diagnosis of diseases of the heart is the electrocardiogram (ECG). This paper concentrates on the diagnosis of four types of ECG records such as myocardial infarction (MYC), normal (N), variances in the ST-segment (ST), and supraventricular arrhythmia (SV). The methodology captures the data from six main datasets, and then the ECG records are filtered using a pre-processing chain. Afterward, a proposed 1D CNN model is applied to extract features from the ECG records. Then, two different classifiers are applied to test the extracted features’ performance and obtain a robust diagnosis accuracy. The two classifiers are the softmax and random forest (RF) classifiers. An experiment is applied to diagnose the four types of ECG records. Finally, the highest performance was achieved using the RF classifier, reaching an accuracy of 98.3%. The comparison with other related works showed that the proposed methodology could be applied as a medical application for the early detection of heart diseases.

Keywords

електрокардіограма (ECG), одновимірна модель згорткової нейронної мережі (CNN), Electronic computers. Computer science, 1D convolutional neural network (CNN) model, Electrocardiogram (ECG), QA75.5-76.95, Continuous wavelet transform (CWT), безперервне вейвлет-перетворення (CWT)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
gold