Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Recolector de Cienci...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Applied Water Science
Article . 2025 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
DIGITAL.CSIC
Article . 2025 . Peer-reviewed
Data sources: DIGITAL.CSIC
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Docta Complutense
Article . 2025
License: CC BY NC ND
Data sources: Docta Complutense
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Applied Water Science
Article . 2025 . Peer-reviewed
https://doi.org/10.2139/ssrn.4...
Article . 2024 . Peer-reviewed
Data sources: Crossref
versions View all 7 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A Surrogate Approach to Model Groundwater Level in Time and Space Based on Tree Regressors

Authors: Pedro Martínez-Santos; Víctor Gómez-Escalonilla; Silvia Díaz-Alcaide; Manuel Rodríguez del Rosario; Héctor Aguilera;

A Surrogate Approach to Model Groundwater Level in Time and Space Based on Tree Regressors

Abstract

[EN] Groundwater is a crucial resource for humans and the environment. Protection of groundwater supplies requires tools to explore and understand the behavior of aquifers. This research presents a machine learning approach to predict groundwater levels in time and space based on tree regressors. Covariates comprise dynamic and static items, including spatial coordinates, aquifer properties, timestamps, recharge and pumping data. Certain dynamic variables also include a subset of lag periods to depict seasonality. Algorithms are tested on a set of climatic scenarios in order to observe their ability to predict stable, declining and recovering groundwater trends. Random forest, ExtraTrees and gradient boosting regression behave rather similarly, with generalization scores in excess of 0.95 for wet, dry and average climatic conditions. Predictive accuracy exceeds 0.85 when comparing their long-term forecasts with unseen predictions computed by means of a calibrated numerical model. Feature importance analysis, coupled with the outcomes of partial dependence plots, suggests that tree regressors are able to capture the relevance of dynamic and static variables, thus making the results extrapolable not only in time, but also in space. Outcomes open up an alternative to model groundwater-related variables without necessarily relying on flow and transport equations. This approach can be readily extrapolated to other settings and might offer a rapid means to obtain useful predictions, provided that enough field data is available.

This work has been funded under research grant PID2021-124018OB-I00 of Spain’s Ministry of Science and Innovation. This work has also been funded and is part of the Research Grant 101059372 of the European Commission, within the Horizon Europe 2021 framework. The methodology for this research was developed within the STARS4Water project and project DEME-ML-2. The STARS4Water project has received funding from the European Union’s Horizon Europe research and innovation program under the Grant Agreement No 101059372. DEME-ML-2 was funded by Spain’s Ministry for Science and Innovation, under grant number PID2021-124018OB-I00.

Peer reviewed

Country
Spain
Keywords

Hidrología, 556.3, Surrogate models, Black box, Machine learning, 2508 Hidrología, Groundwater modeling, Tree algorithms, Regression

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
gold