Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Archivio della ricer...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1007/978-3-...
Part of book or chapter of book . 2025 . Peer-reviewed
License: Springer Nature TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

On the Performance of Multi-Objective Evolutionary Algorithms for Energy Management in Microgrids

Authors: Capillo, Antonino; De Santis, Enrico; Frattale Mascioli, Fabio Massimo; Rizzi, Antonello;

On the Performance of Multi-Objective Evolutionary Algorithms for Energy Management in Microgrids

Abstract

In the context of Energy Communities (ECs), where energy flows among PV generators, batteries and loads have to be optimally managed not to waste a single drop of energy, relying on robust optimization algorithms is mandatory. The purpose of this work is to reasonably investigate the performance of the Fuzzy Inference System - Multi-Objective - Genetic Algorithm model (MO-FIS-GA), synthesized for achieving the optimal Energy Management strategy for a docked e-boat. The MO-FIS-GA performance is compared to a model composed of the same FIS implementation related to the former work but optimized by a Differential Evolution (DE) algorithm – instead of the GA – on the same optimization problem. Since the aim is not evaluating the best-performing optimization algorithm, it is not necessary to push their capabilities to the max. Rather, a good meta-parameter combination is found for the GA and the DE such that their performance is acceptable according to the technical literature. Results show that the MO-FIS-GA performance is similar to the equivalent MO-FIS-DE model, suggesting that the former could be worth developing. Further works will focus on proposing the aforementioned comparison on different optimization problems for a wider performance evaluation, aiming at implementing the MO-FIS-GA on a wide range of real applications, not only in the nautical field.

Related Organizations
Keywords

microgrid energy management system; evolutionary optimization; renewable energy; fuzzy inference system

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!