Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE/ACM Transaction...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE/ACM Transactions on Computational Biology and Bioinformatics
Article . 2023 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
DBLP
Article
Data sources: DBLP
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Network-Based Structural Learning Nonnegative Matrix Factorization Algorithm for Clustering of scRNA-Seq Data

Authors: Wenming Wu; Xiaoke Ma 0001;

Network-Based Structural Learning Nonnegative Matrix Factorization Algorithm for Clustering of scRNA-Seq Data

Abstract

Single-cell RNA sequencing (scRNA-seq) measures expression profiles at the single-cell level, which sheds light on revealing the heterogeneity and functional diversity among cell populations. The vast majority of current algorithms identify cell types by directly clustering transcriptional profiles, which ignore indirect relations among cells, resulting in an undesirable performance on cell type discovery and trajectory inference. Therefore, there is a critical need for inferring cell types and trajectories by exploiting the interactions among cells. In this study, we propose a network-based structural learning nonnegative matrix factorization algorithm (aka SLNMF) for the identification of cell types in scRNA-seq, which is transformed into a constrained optimization problem. SLNMF first constructs the similarity network for cells and then extracts latent features of the cells by exploiting the topological structure of the cell-cell network. To improve the clustering performance, the structural constraint is imposed on the model to learn the latent features of cells by preserving the structural information of the networks, thereby significantly improving the performance of algorithms. Finally, we track the trajectory of cells by exploring the relationships among cell types. Fourteen scRNA-seq datasets are adopted to validate the performance of algorithms with the number of single cells varying from 49 to 26,484. The experimental results demonstrate that SLNMF significantly outperforms fifteen state-of-the-art methods with 15.32% improvement in terms of accuracy, and it accurately identifies the trajectories of cells. The proposed model and methods provide an effective strategy to analyze scRNA-seq data. (The software is coded using matlab, and is freely available for academic https://github.com/xkmaxidian/SLNMF).

Related Organizations
Keywords

Sequence Analysis, RNA, Gene Expression Profiling, Cluster Analysis, Single-Cell Analysis, Single-Cell Gene Expression Analysis, Algorithms

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    26
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
26
Top 10%
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!