Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Genetic Programming ...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Genetic Programming and Evolvable Machines
Article . 2018 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Grammatical evolution as a hyper-heuristic to evolve deterministic real-valued optimization algorithms

Authors: Iztok Fajfar; Árpád Bűrmen; Janez Puhan;

Grammatical evolution as a hyper-heuristic to evolve deterministic real-valued optimization algorithms

Abstract

Hyper-heuristic methodologies have been extensively and successfully used to generate combinatorial optimization heuristics. On the other hand, there have been almost no attempts to build a hyper-heuristic to evolve an algorithm for solving real-valued optimization problems. In our previous research, we succeeded to evolve a Nelder–Mead-like real function minimization heuristic using genetic programming and the primitives extracted from the original Nelder–Mead algorithm. The resulting heuristic was better than the original Nelder–Mead method in the number of solved test problems but it was slower in that it needed considerably more cost function evaluations to solve the problems also solved by the original method. In this paper we exploit grammatical evolution as a hyper-heuristic to evolve heuristics that outperform the original Nelder–Mead method in all aspects. However, the main goal of the paper is not to build yet another real function optimization algorithm but to shed some light on the influence of different factors on the behavior of the evolution process as well as on the quality of the obtained heuristics. In particular, we investigate through extensive evolution runs the influence of the shape and dimensionality of the training function, and the impact of the size limit set to the evolving algorithms. At the end of this research we succeeded to evolve a number of heuristics that solved more test problems and in fewer cost function evaluations than the original Nelder–Mead method. Our solvers are also highly competitive with the improvements made to the original method based on rigorous mathematical convergence proofs found in the literature. Even more importantly, we identified some directions in which to continue the work in order to be able to construct a productive hyper-heuristic capable of evolving real function optimization heuristics that would outperform a human designer in all aspects.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!