
Identification of license plates on intermodal containers (or containers) while entering and departing from the yard provides a wide range of practical benefits, such as organizing automatic opening of the rising arm barrier at the entrance and exit to and from the site. In addition, automatic container code recognition can also assist in thwarting the entrance of unauthorized vehicles into the territory. With the recent development of AI, this process is preferably automatic. However, the poor quality of images obtained from surveillance cameras might have detrimental effects on AI models. To deal with this problem, we present a pipeline dubbed as MultiDeep system, which combines several state-of-the-art deep learning models for character recognition and computer vision processes to solve problems of real camera data. We have also compared our results with other pipeline models on real data and accomplished fairly positive results. In this paper, without further references, we will only consider intermodal containers when referring to them as containers.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
