Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.48550/ar...
Article . 2025
License: CC BY NC ND
Data sources: Datacite
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Algorithmic Complexity Attacks on All Learned Cardinality Estimators: A Data-centric Approach

Authors: Li, Yingze; Liu, Xianglong; Wang, Dong; Wang, Zixuan; Wang, Hongzhi; Zhang, Kaixing; Guan, Yiming;

Algorithmic Complexity Attacks on All Learned Cardinality Estimators: A Data-centric Approach

Abstract

Learned cardinality estimators show promise in query cardinality prediction, yet they universally exhibit fragility to training data drifts, posing risks for real-world deployment. This work is the first to theoretical investigate how minimal data-level drifts can maximally degrade the accuracy of learned estimators. We propose data-centric algorithmic complexity attacks against learned estimators in a black-box setting, proving that finding the optimal attack strategy is NP-Hard. To address this, we design a polynomial-time approximation algorithm with a $(1-κ)$ approximation ratio. Extensive experiments demonstrate our attack's effectiveness: on STATS-CEB and IMDB-JOB benchmarks, modifying just 0.8\% of training tuples increases the 90th percentile Qerror by three orders of magnitude and raises end-to-end processing time by up to 20$\times$. Our work not only reveals critical vulnerabilities in deployed learned estimators but also provides the first unified worst-case theoretical analysis of their fragility under data updates. Additionally, we identify two countermeasures to mitigate such black-box attacks, offering insights for developing robust learned database optimizers.

Keywords

FOS: Computer and information sciences, Databases, Databases (cs.DB)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green