Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Mathematical Bioscie...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Mathematical Biosciences and Engineering
Article . 2021 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Mathematical Biosciences and Engineering
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.60692/we...
Other literature type . 2021
Data sources: Datacite
https://dx.doi.org/10.60692/7w...
Other literature type . 2021
Data sources: Datacite
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A novel design of Gudermannian function as a neural network for the singular nonlinear delayed, prediction and pantograph differential models

تصميم جديد لوظيفة Gudermannian كشبكة عصبية للنماذج التفاضلية المفردية غير الخطية المتأخرة والتنبؤ والمخطوط الشامل
Authors: Zulqurnain Sabir; Hafiz Abdul Wahab; Juan L. G. Guirao;

A novel design of Gudermannian function as a neural network for the singular nonlinear delayed, prediction and pantograph differential models

Abstract

<abstract> <p>The present work is to solve the nonlinear singular models using the framework of the stochastic computing approaches. The purpose of these investigations is not only focused to solve the singular models, but the solution of these models will be presented to the extended form of the delayed, prediction and pantograph differential models. The Gudermannian function is designed using the neural networks optimized through the global scheme "genetic algorithms (GA)", local method "sequential quadratic programming (SQP)" and the hybridization of GA-SQP. The comparison of the singular equations will be presented with the exact solutions along with the extended form of delayed, prediction and pantograph based on these singular models. Moreover, the neuron analysis will be provided to authenticate the efficiency and complexity of the designed approach. For the correctness and effectiveness of the proposed approach, the plots of absolute error will be drawn for the singular delayed, prediction and pantograph differential models. For the reliability and stability of the proposed method, the statistical performances "Theil inequality coefficient", "variance account for" and "mean absolute deviation'' are observed for multiple executions to solve singular delayed, prediction and pantograph differential models.</p> </abstract>

Keywords

Artificial intelligence, Social Sciences, FOS: Mechanical engineering, Evolutionary biology, Quadratic programming, Decision Sciences, Engineering, Differential equation, global scheme, Physics, Mathematical optimization, Probabilistic Design Optimization, statistical performances, neuron analysis, Mechanical engineering, Algorithm, Function (biology), Modeling and Simulation, Physical Sciences, local approach, Statistics, Probability and Uncertainty, Correctness, Algorithms, Biotechnology, Artificial neural network, gudermannian neural networks, Control (management), complexity analysis, Mathematical analysis, Quantum mechanics, Tribological Studies of Automotive Brake Friction Materials, QA1-939, FOS: Mathematics, Control theory (sociology), Biology, Anomalous Diffusion Modeling and Analysis, Pantograph, Sequential quadratic programming, Reproducibility of Results, Applied mathematics, singular models, Computer science, Nonlinear Dynamics, Uncertainty Quantification and Sensitivity Analysis, Automotive Engineering, Nonlinear system, Neural Networks, Computer, TP248.13-248.65, Mathematics

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    22
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
22
Top 10%
Average
Top 10%
gold