
arXiv: 1303.6046
In distributed storage systems reliability is achieved through redundancy stored at different nodes in the network. Then a data collector can reconstruct source information even though some nodes fail. To maintain reliability, an autonomous and efficient protocol should be used to repair the failed node. The repair process causes traffic and consequently transmission cost in the network. Recent results found the optimal trafficstorage tradeoff, and proposed regenerating codes to achieve the optimality. We aim at minimizing the transmission cost in the repair process. We consider the network topology in the repair, and accordingly modify information flow graphs. Then we analyze the cut requirement and based on the results, we formulate the minimum-cost as a linear programming problem for linear costs. We show that the solution of the linear problem establishes a fundamental lower bound of the repair-cost. We also show that this bound is achievable for minimum storage regenerating, which uses the optimal-cost minimum-storage regenerating (OCMSR) code. We propose surviving node cooperation which can efficiently reduce the repair cost. Further, the field size for the construction of OCMSR codes is discussed. We show the gain of optimal-cost repair in tandem, star, grid and fully connected networks.
(Submitted)
FOS: Computer and information sciences, Computer Science - Information Theory, Information Theory (cs.IT)
FOS: Computer and information sciences, Computer Science - Information Theory, Information Theory (cs.IT)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
