Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1109/cei524...
Article . 2021 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Research on MDS and Semi-supervised Clustering Algorithm

Authors: Dong Chen; Changxin Song;

Research on MDS and Semi-supervised Clustering Algorithm

Abstract

With the rapid development of computer technology, the dimensions of data have exploded, and many data analyses have become very difficult. To solve the above problems, the use of dimension reduction method of the multidimensional scaling transformation (MDS) for data dimension reduction, get rid of some redundant information, save the storage space. In view of the traditional k-means clustering method, by introducing a pair constraint supervision information to guide the clustering process, formed a semi-supervised k means clustering approach. In addition, on the basis of the Cop-Kmeans algorithm based on Breadth-first search (BFS), I design an improvement based on data segmentation technology in terms of the selection of the initial clustering center. In this paper, MDS and the improved $\text{BFS}+\text{Cop}$ -Kmeans algorithm are fused to form the $\text{MDS}+\text{BCK}$ algorithm, and on the UCI data set an experimental verification was performed. The first results of the test indicate that the performance of the present algorithm shows further improvements compared to the traditional k-mean algorithm, the Cop-Kmean means, and the unimproved $\text{BFS}\ +\ \text{Cop}$ - Kmean algorithm.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!