
In this paper, we present a novel audio synthesizer, CAESynth, based on a conditional autoencoder. CAESynth synthesizes timbre in real-time by interpolating the reference sounds in their shared latent feature space, while controlling a pitch independently. We show that training a conditional autoencoder based on accuracy in timbre classification together with adversarial regularization of pitch content allows timbre distribution in latent space to be more effective and stable for timbre interpolation and pitch conditioning. The proposed method is applicable not only to creation of musical cues but also to exploration of audio affordance in mixed reality based on novel timbre mixtures with environmental sounds. We demonstrate by experiments that CAESynth achieves smooth and high-fidelity audio synthesis in real-time through timbre interpolation and independent yet accurate pitch control for musical cues as well as for audio affordance with environmental sound. A Python implementation along with some generated samples are shared online.
MLSP 2021
FOS: Computer and information sciences, Computer Science - Machine Learning, Sound (cs.SD), Audio and Speech Processing (eess.AS), FOS: Electrical engineering, electronic engineering, information engineering, Computer Science - Sound, Electrical Engineering and Systems Science - Audio and Speech Processing, Machine Learning (cs.LG)
FOS: Computer and information sciences, Computer Science - Machine Learning, Sound (cs.SD), Audio and Speech Processing (eess.AS), FOS: Electrical engineering, electronic engineering, information engineering, Computer Science - Sound, Electrical Engineering and Systems Science - Audio and Speech Processing, Machine Learning (cs.LG)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
