Downloads provided by UsageCounts
handle: 2117/361458
AbstractReduced‐order models are essential tools to deal with parametric problems in the context of optimization, uncertainty quantification, or control and inverse problems. The set of parametric solutions lies in a low‐dimensional manifold (with dimension equal to the number of independent parameters) embedded in a large‐dimensional space (dimension equal to the number of degrees of freedom of the full‐order discrete model). A posteriori model reduction is based on constructing a basis from a family of snapshots (solutions of the full‐order model computed offline), and then use this new basis to solve the subsequent instances online. Proper orthogonal decomposition (POD) reduces the problem into a linear subspace of lower dimension, eliminating redundancies in the family of snapshots. The strategy proposed here is to use a nonlinear dimensionality reduction technique, namely, the kernel principal component analysis (kPCA), in order to find a nonlinear manifold, with an expected much lower dimension, and to solve the problem in this low‐dimensional manifold. Guided by this paradigm, the methodology devised here introduces different novel ideas, namely, 1) characterizing the nonlinear manifold using local tangent spaces, where the reduced‐order problem is linear and based on the neighboring snapshots, 2) the approximation space is enriched with the cross‐products of the snapshots, introducing a quadratic description, 3) the kernel for kPCA is defined ad hoc, based on physical considerations, and 4) the iterations in the reduced‐dimensional space are performed using an algorithm based on a Delaunay tessellation of the cloud of snapshots in the reduced space. The resulting computational strategy is performing outstandingly in the numerical tests, alleviating many of the problems associated with POD and improving the numerical accuracy.
Reduced-order models, observability, Control::93B Controllability, :Matemàtiques i estadística::Matemàtica aplicada a les ciències [Àrees temàtiques de la UPC], Control::93B Controllability, observability, and system structure, 60H35, 62-08, Computing Methodologies, 510, Sistemes de control, Informàtica, FOS: Mathematics, :68 Computer science::68U Computing methodologies and applications [Classificació AMS], Mathematics - Numerical Analysis, Classificació AMS::93 Systems Theory; Control::93B Controllability, observability, and system structure, System theory, Àrees temàtiques de la UPC::Matemàtiques i estadística::Investigació operativa::Simulació, :93 Systems Theory [Classificació AMS], Classificació AMS::68 Computer science::68U Computing methodologies and applications, Nonlinear multidimensionality reduction, Numerical Analysis (math.NA), and system structure, :93B Controllability, observability, and system structure [Control], kPCA, :Matemàtiques i estadística::Investigació operativa::Simulació [Àrees temàtiques de la UPC], Classificació AMS::93 Systems Theory, Àrees temàtiques de la UPC::Matemàtiques i estadística::Matemàtica aplicada a les ciències, Parametric problems
Reduced-order models, observability, Control::93B Controllability, :Matemàtiques i estadística::Matemàtica aplicada a les ciències [Àrees temàtiques de la UPC], Control::93B Controllability, observability, and system structure, 60H35, 62-08, Computing Methodologies, 510, Sistemes de control, Informàtica, FOS: Mathematics, :68 Computer science::68U Computing methodologies and applications [Classificació AMS], Mathematics - Numerical Analysis, Classificació AMS::93 Systems Theory; Control::93B Controllability, observability, and system structure, System theory, Àrees temàtiques de la UPC::Matemàtiques i estadística::Investigació operativa::Simulació, :93 Systems Theory [Classificació AMS], Classificació AMS::68 Computer science::68U Computing methodologies and applications, Nonlinear multidimensionality reduction, Numerical Analysis (math.NA), and system structure, :93B Controllability, observability, and system structure [Control], kPCA, :Matemàtiques i estadística::Investigació operativa::Simulació [Àrees temàtiques de la UPC], Classificació AMS::93 Systems Theory, Àrees temàtiques de la UPC::Matemàtiques i estadística::Matemàtica aplicada a les ciències, Parametric problems
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 24 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
| views | 44 | |
| downloads | 143 |

Views provided by UsageCounts
Downloads provided by UsageCounts