Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IEEE Accessarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2020 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2020
Data sources: DOAJ
https://dx.doi.org/10.60692/q6...
Other literature type . 2020
Data sources: Datacite
https://dx.doi.org/10.60692/yr...
Other literature type . 2020
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Combinatorial Test Suites Generation Strategy Utilizing the Whale Optimization Algorithm

استراتيجية توليد أجنحة الاختبار التوافقية باستخدام خوارزمية تحسين الحيتان
Authors: Ali Hassan; Salwani Abdullah; Kamal Z. Zamli; Rozilawati Razali;

Combinatorial Test Suites Generation Strategy Utilizing the Whale Optimization Algorithm

Abstract

Las potencialmente muchas combinaciones de entrada del sistema de software hacen que las pruebas exhaustivas sean prácticamente imposibles. Para abordar este problema, se adoptaron pruebas combinatorias de t-way (donde t indica la fuerza de interacción, es decir, el número de parámetros de interacción (entrada)) para minimizar el número de casos para la prueba. Complementarias a las técnicas de prueba existentes (por ejemplo, valor límite, partición de equivalencia, gráfico de causa y efecto), las pruebas combinatorias ayudan a detectar fallas causadas por la interacción defectuosa entre los parámetros de entrada. En los últimos 15 años, las aplicaciones de la metaheurística como la columna vertebral de la generación de conjuntos de pruebas t-way han mostrado resultados prometedores (por ejemplo, optimización de enjambre de partículas, búsqueda de cucos, algoritmo de polinización de flores e hiperheurística (HHH), por nombrar algunos). Apoyando el teorema de No Free Lunch, además de ofrecer potencialmente nuevos conocimientos sobre todo el proceso de generación de t-way, este artículo propone una nueva estrategia con soporte de restricciones basada en el Algoritmo de Optimización de Ballenas (WOA). Nuestro trabajo es el primer intento de adoptar la WOA como parte de una iniciativa de ingeniería de software basada en búsqueda (SBSE) para la generación de conjuntos de pruebas t-way con soporte de restricciones. Los resultados experimentales de la generación de conjuntos de pruebas indican que WOA produce resultados competitivos en comparación con algunos algoritmos metaheurísticos seleccionados basados en una sola base y basados en la población.

Les nombreuses combinaisons d'entrées du système logiciel rendent les tests exhaustifs pratiquement impossibles. Pour résoudre ce problème, le test combinatoire de la voie t (où t indique la force d'interaction, c'est-à-dire le nombre de paramètres d'interaction (entrée)) a été adopté pour minimiser le nombre de cas à tester. Complémentaire aux techniques de test existantes (par exemple, valeur limite, partitionnement d'équivalence, graphique de cause à effet), le test combinatoire aide à détecter les défauts causés par l'interaction défectueuse entre les paramètres d'entrée. Au cours des 15 dernières années, les applications de la méta-heuristique en tant qu'épine dorsale de la génération de la suite de tests t-way ont montré des résultats prometteurs (par exemple, l'optimisation de l'essaim de particules, la recherche de coucous, l'algorithme de pollinisation des fleurs et l'hyper-heuristique (HHH), pour n'en nommer que quelques-uns). Soutenant le théorème du No Free Lunch, tout en offrant potentiellement de nouvelles perspectives sur l'ensemble du processus de génération de t-way, cet article propose une nouvelle stratégie avec support des contraintes basée sur l'algorithme d'optimisation des baleines (WOA). Notre travail est la première tentative d'adoption de la WOA dans le cadre d'une initiative de génie logiciel basé sur la recherche (SBSE) pour la génération de suites de tests t-way avec support des contraintes. Les résultats expérimentaux de la génération test-suite indiquent que WOA produit des résultats compétitifs par rapport à certains algorithmes méta-heuristiques sélectionnés à base unique et basés sur la population.

The potentially many software system input combinations make exhaustive testing practically impossible. To address this issue, combinatorial t-way testing (where t indicates the interaction strength, i.e. the number of interacting parameters (input)) was adopted to minimize the number of cases for testing. Complimentary to existing testing techniques (e.g. boundary value, equivalence partitioning, cause and effect graphing), combinatorial testing helps to detect faults caused by the faulty interaction between input parameters. In the last 15 years, applications of meta-heuristics as the backbone of t-way test suite generation have shown promising results (e.g. Particle Swarm Optimization, Cuckoo Search, Flower Pollination Algorithm, and Hyper-Heuristics (HHH), to name a few). Supporting the No Free Lunch theorem, as well as potentially offering new insights into the whole process of t-way generation, this article proposes a new strategy with constraint support based on the Whale Optimization Algorithm (WOA). Our work is the first attempt to adopt the WOA as part of a search-based software engineering (SBSE) initiative for t-way test suite generation with constraint support. The experimental results of the test-suite generation indicate that WOA produces competitive outcomes compared to some selected single-based and population-based meta-heuristic algorithms.

إن مجموعات إدخال نظام البرامج العديدة المحتملة تجعل الاختبار الشامل مستحيلًا عمليًا. لمعالجة هذه المشكلة، تم اعتماد اختبار t - way التوافقي (حيث يشير t إلى قوة التفاعل، أي عدد المعلمات المتفاعلة (المدخلات)) لتقليل عدد الحالات للاختبار. تكملة لتقنيات الاختبار الحالية (مثل القيمة الحدية، وتقسيم التكافؤ، والرسوم البيانية للسبب والنتيجة)، يساعد الاختبار التوافقي على اكتشاف الأخطاء الناجمة عن التفاعل الخاطئ بين معلمات الإدخال. في السنوات الخمس عشرة الماضية، أظهرت تطبيقات الاستدلال التلوي باعتبارها العمود الفقري لتوليد مجموعة اختبار t - way نتائج واعدة (على سبيل المثال، تحسين سرب الجسيمات، والبحث عن الوقواق، وخوارزمية تلقيح الزهور، وفرط السمع (HHH)، على سبيل المثال لا الحصر). دعمًا لنظرية عدم وجود غداء مجاني، بالإضافة إلى احتمال تقديم رؤى جديدة حول العملية الكاملة لتوليد t - way، تقترح هذه المقالة استراتيجية جديدة مع دعم القيود بناءً على خوارزمية تحسين الحيتان (WOA). عملنا هو المحاولة الأولى لاعتماد WOA كجزء من مبادرة هندسة البرمجيات القائمة على البحث (SBSE) لتوليد مجموعة اختبار t - way مع دعم القيود. تشير النتائج التجريبية لتوليد مجموعة الاختبار إلى أن WOA تنتج نتائج تنافسية مقارنة ببعض الخوارزميات الاستدلالية الفردية والسكانية المختارة.

Keywords

FOS: Computer and information sciences, Population, Software Defect Prediction, Code coverage, Search-based software engineering, Sociology, Machine learning, FOS: Mathematics, Heuristics, Software design, Demography, Dynamic Test Generation, Automated Software Testing Techniques, Geography, Particle swarm optimization, Mathematical optimization, Test suite, Cuckoo search, software testing, Software development, Computer science, meta-heuristic, TK1-9971, Programming language, FOS: Sociology, Algorithm, Operating system, Search-based software engineering (SBSE), T-way testing, Solver, Computer Science, Physical Sciences, Search-Based Testing, Electrical engineering. Electronics. Nuclear engineering, Software Reliability Assessment and Prediction, Test case, Benchmark (surveying), Regression analysis, combinatorial testing, Software, Mathematics, Geodesy, Empirical Studies in Software Engineering, Information Systems

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    19
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
19
Top 10%
Average
Top 10%
gold