Downloads provided by UsageCounts
We develop splitting techniques to study Lyubeznik numbers of cover ideals of graphs which allow us to describe them for large families of graphs including forests, cycles, wheels and cactus graphs. More generally we are able to compute all the Bass numbers and the shape of the injective resolution of local cohomology modules by considering the connected components of the corresponding subgraphs. Indeed our method gives us a very simple criterion for the vanishing of these local cohomology modules in terms of the connected components.
31 pages
Àlgebra homològica, Classificació AMS::05 Combinatorics::05C Graph theory, Injective resolution, Commutative Algebra (math.AC), local cohomology, injective resolution, Grafs, FOS: Mathematics, Mathematics - Combinatorics, graphs, Àrees temàtiques de la UPC::Matemàtiques i estadística, Local cohomology, Connectivity, Teoria de, :13 Commutative rings and algebras::13C Theory of modules and ideals [Classificació AMS], Grafs, Teoria de, Injective and flat modules and ideals in commutative rings, Homological algebra, :Matemàtiques i estadística [Àrees temàtiques de la UPC], Mathematics - Commutative Algebra, Classificació AMS::13 Commutative rings and algebras::13C Theory of modules and ideals, Classificació AMS::13 Commutative rings and algebras::13D Homological methods, Graph theory, Local cohomology and commutative rings, connectivity, Combinatorics (math.CO), :13 Commutative rings and algebras::13D Homological methods [Classificació AMS], :05 Combinatorics::05C Graph theory [Classificació AMS], Paths and cycles, Graphs
Àlgebra homològica, Classificació AMS::05 Combinatorics::05C Graph theory, Injective resolution, Commutative Algebra (math.AC), local cohomology, injective resolution, Grafs, FOS: Mathematics, Mathematics - Combinatorics, graphs, Àrees temàtiques de la UPC::Matemàtiques i estadística, Local cohomology, Connectivity, Teoria de, :13 Commutative rings and algebras::13C Theory of modules and ideals [Classificació AMS], Grafs, Teoria de, Injective and flat modules and ideals in commutative rings, Homological algebra, :Matemàtiques i estadística [Àrees temàtiques de la UPC], Mathematics - Commutative Algebra, Classificació AMS::13 Commutative rings and algebras::13C Theory of modules and ideals, Classificació AMS::13 Commutative rings and algebras::13D Homological methods, Graph theory, Local cohomology and commutative rings, connectivity, Combinatorics (math.CO), :13 Commutative rings and algebras::13D Homological methods [Classificació AMS], :05 Combinatorics::05C Graph theory [Classificació AMS], Paths and cycles, Graphs
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
| views | 35 | |
| downloads | 37 |

Views provided by UsageCounts
Downloads provided by UsageCounts