
Multi-organ segmentation is the process of identifying and separating multiple organs in medical images. This segmentation allows for the detection of structural abnormalities by examining the morphological structure of organs. Carrying out the process quickly and precisely has become an important issue in today's conditions. In recent years, researchers have used various technologies for the automatic segmentation of multiple organs. In this study, improvements were made to increase the multi-organ segmentation performance of the 3D U-Net based fusion model combining HSV and grayscale color spaces and compared with state-of-the-art models. Training and testing were performed on the MICCAI 2015 dataset published at Vanderbilt University, which contains 3D abdominal CT images in NIfTI format. The model's performance was evaluated using the Dice similarity coefficient. In the tests, the liver organ showed the highest Dice score. Considering the average Dice score of all organs, and comparing it with other models, it has been observed that the fusion approach model yields promising results.
Computed Tomograph;Multi Organ Segmentation;Deep Learning;Fusion Model;U-Net, Biyomedikal Görüntüleme, Biomedical Imaging
Computed Tomograph;Multi Organ Segmentation;Deep Learning;Fusion Model;U-Net, Biyomedikal Görüntüleme, Biomedical Imaging
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
