
The kernel recursive least squares (KRLS) algorithm is used to improve the convergence rate and filtering accuracy of kernel adaptive filters (KAFs) in the Gaussian noise case. However, the linear growing network size in KRLS poses a huge amount of time and storage consumption. To address this issue, a novel Nystr ${\rm {{ \ddot{\bf{o}}}}}$ m kernel recursive least squares (NysKRLS) algorithm is proposed by approximating the Gaussian kernel with the Nystr ${\rm {{ \ddot{\bf{o}}}}}$ m method. In addition, the $k$ -means sampling is adopted in NysKRLS to develop another Nystr ${\rm {{ \ddot{\bf{o}}}}}$ m kernel recursive least squares with $k$ -means sampling (NysKRLS-KM) algorithm for further improving the approximation accuracy. NysKRLS-KM with a fixed dimensional network structure can achieve significantly better performance than the KAFs based on the stochastic gradient descent (SGD) method, and almost the same performance as KRLS efficiently. Monte Carlo simulations on nonlinear system identification and prediction of real-world data illustrate the superiorities of the proposed NysKRLS-KM algorithm from the aspects of computational and spatial complexity.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 14 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
