
doi: 10.1002/cpe.1549
AbstractAlgorithmic skeletons abstract commonly used patterns of parallel computation, communication, and interaction. Based on the algorithmic skeleton concept, structured parallelism provides a high‐level parallel programming technique that allows the conceptual description of parallel programs while fostering platform independence and algorithm abstraction. This work presents a methodology to improve skeletal parallel programming in heterogeneous distributed systems by introducing adaptivity through resource awareness. As we hypothesise that a skeletal program should be able to adapt to the dynamic resource conditions over time using its structural forecasting information, we have developed adaptive structured parallelism (ASPARA). ASPARA is a generic methodology to incorporate structural information at compilation into a parallel program, which will help it to adapt at execution. ASPARA comprises four phases: programming, compilation, calibration, and execution. We illustrate the feasibility of this approach and its associated performance improvements using independent case studies based on two algorithmic skeletons—the task farm and the pipeline—evaluated in a non‐dedicated heterogeneous multi‐cluster system. Copyright © 2010 John Wiley & Sons, Ltd.
Electronic computers. Computer science, 004
Electronic computers. Computer science, 004
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 12 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
