
Abstract The traditional recognition method of whitewash behavior of accounting statements needs to analyze a large number of special data samples. The learning rate of the algorithm is low, resulting in low recognition accuracy. To solve the aforementioned problems, this article proposes a method to identify the whitewash behavior of university accounting statements based on the FCM clustering algorithm. This article analyzes the motivation of university accounting statement whitewashing behavior, studies the common means of statement whitewashing, and establishes a fuzzy set for the identification of university accounting statement whitewashing behavior. By calculating the fuzzy partition coefficient, the membership matrix of whitewash behavior recognition is established, and the whitewash behavior is classified through the iteration of the FCM algorithm. The comparative experimental results show that the recognition method has good recognition performance, low recognition error rate, and recognition accuracy of 82%.
fcm clustering algorithm, Science, Electronic computers. Computer science, Q, university accounting statements, whitewashing behavior, QA75.5-76.95, behavior recognition
fcm clustering algorithm, Science, Electronic computers. Computer science, Q, university accounting statements, whitewashing behavior, QA75.5-76.95, behavior recognition
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
