Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ http://arxiv.org/pdf...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.1109/bigdat...
Article . 2016 . Peer-reviewed
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2015
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A meta-graph approach to analyze subgraph-centric distributed programming models

Authors: Dindokar, Ravikant; Choudhury, Neel; Simmhan, Yogesh;

A meta-graph approach to analyze subgraph-centric distributed programming models

Abstract

Component-centric distributed graph processing platforms that use a bulk synchronous parallel (BSP) programming model have gained traction. These address the short-comings of Big Data abstractions/platforms like MapReduce/Hadoop for large-scale graph processing. However, there is limited literature on foundational aspects of the behavior of these component-centric abstractions for different graphs, graph partitioning, and graph algorithms. Here, we propose a analytical approach based on a meta-graph sketch to examine the characteristics of component-centric graph programming models at a coarse granularity. In particular, we apply this sketch to subgraph- and block-centric abstractions, and draw a comparison with vertex-centric models like Google's Pregel. First, we explore the impact of various graph partitioning techniques on the meta-graph, and next consider the impact of the meta-graph on graph algorithms. This decouples the unwieldy large graph and their partitioning specific artifacts from their algorithmic analysis. We use 5 spatial and powerlaw graphs as exemplars, four different partitioning strategies, and PageRank and Breadth First Search as canonical algorithms. These analysis over the meta-graphs provide a reliable measure of the expected number of supersteps, and the communication and computational complexity of the algorithms for various graphs, and the relative merits of subgraph-centric models over vertex-centric ones.

Related Organizations
Keywords

FOS: Computer and information sciences, Computer Science - Distributed, Parallel, and Cluster Computing, Distributed, Parallel, and Cluster Computing (cs.DC)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Average
Average
Top 10%
Green