Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1007/978-3-...
Part of book or chapter of book . 2025 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Introducing pyFBS: An Open-Source Python Package for Frequency Based Substructuring and Transfer Path Analysis

Authors: Tomaž Bregar; Ahmed El Mahmoudi; Miha Kodrič; Gregor Čepon; Miha Boltežar; Daniel J. Rixen;

Introducing pyFBS: An Open-Source Python Package for Frequency Based Substructuring and Transfer Path Analysis

Abstract

pyFBS is an open-source Python package for Frequency Based Substructuring. The package implements an object-oriented approach for dynamic substructuring. State-of-the-art methodologies in frequency based substructuring, such as virtual point transformation and system equivalent model mixing, are available within the pyFBS. Each method can be used as a standalone or interchangeably with others. Tools are provided to easily visualize components and configure the measurement setup. Also operational deflection shapes and mode shapes can be animated directly within the 3D display. Furthermore, basic and application examples are available, together with numerical and experimental datasets, to enable the user to get familiar with the work flow of the package. This paper showcases the use of the pyFBS on two example structures. Firstly, a simple beam-like structure is used to depict the use of the 3D display, FRF synthetization, virtual point transformation and system equivalent model mixing. Secondly, an automotive test-structure is used to show the use of the pyFBS on real-life complex structure, where the in-situ transfer path analysis is used to characterize blocked forces. The development of the pyFBS is an ongoing effort, as it is actively being used as a research tool. Additional features and new methods will be integrated within the pyFBS in the near future.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Top 10%
Average
Average
Related to Research communities
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!