
handle: 10722/251220 , 11586/227346
Abstract In this study, we aim to understand how the provision of ecosystem services (ESS) is spatially distributed within a compact urban system considering the structure and spatial arrangement of green spaces in relation to built-up areas and other infrastructures. For this purpose, we devised an approach to assess the ESS provided by urban green spaces through the integration of social data (i.e., stakeholders’ perception of the multiple benefits of green spaces) with remotely sensed data, such as high-resolution satellite images and Laser Imaging Detection and Ranging (LiDAR) point-cloud. We developed a spatially explicit indicator (or metric) called Normalized Difference Green-Building Volume ( NDGB ), derived from remote sensing, that can be used to predict the way people perceive the ESS conveyed by green spaces in cities. We designed the NDGB metric using the city of Bari, Southern Italy, as a case example by involving four groups of stakeholders (n = 202) to assess ten urban green spaces. Our results show a strong positive relationship between the NDGB and the way stakeholders perceive the ESS provided by these urban green spaces. Thus, our indicator accurately expresses the relationship between stakeholders’ perceptions of ESS provided by green spaces and the physical data (i.e., green space structure) produced by remote sensing technology. The green space most highly evaluated by the NDGB indicator, the periurban park “Lama Balice”, was also the one on which all stakeholder group responses converged, including the group of NGOs and associations, which assigned average low scores for perceived ESS across all the green spaces presented in the study. The study was developed using the city of Bari in Southern Italy as testbed. There is a need to further extend and replicate our approach to other urban systems across different regions (e.g., Northern Europe, North America, Asia), especially those which are in the process of pursuing more sustainable green infrastructure planning and development, as they could be inclined to adopt our approach in ongoing decision making processes. We believe our approach can inform planners and decision makers on ESS provision and supply them with evidence of the local co-benefits of green spaces as well as of the spatial distribution of ESS within compact urban systems.
Behavior and Systematic, Scaling up, Ecology, Evolution, Urban green space, Green infrastructure, Remote sensing, Decision Sciences (all), Urban planning, Urban green spaces
Behavior and Systematic, Scaling up, Ecology, Evolution, Urban green space, Green infrastructure, Remote sensing, Decision Sciences (all), Urban planning, Urban green spaces
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 47 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
