Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sensorsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sensors
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2024
License: CC BY
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sensors
Article . 2024
Data sources: DOAJ
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Research on the Optimization Method of Visual Sensor Calibration Combining Convex Lens Imaging with the Bionic Algorithm of Wolf Pack Predation

Authors: Qingdong Wu; Jijun Miao; Zhaohui Liu; Jiaxiu Chang;

Research on the Optimization Method of Visual Sensor Calibration Combining Convex Lens Imaging with the Bionic Algorithm of Wolf Pack Predation

Abstract

To improve the accuracy of camera calibration, a novel optimization method is proposed in this paper, which combines convex lens imaging with the bionic algorithm of Wolf Pack Predation (CLI-WPP). During the optimization process, the internal parameters and radial distortion parameters of the camera are regarded as the search targets of the bionic algorithm of Wolf Pack Predation, and the reprojection error of the calibration results is used as the fitness evaluation criterion of the bionic algorithm of Wolf Pack Predation. The goal of optimizing camera calibration parameters is achieved by iteratively searching for a solution that minimizes the fitness value. To overcome the drawback that the bionic algorithm of Wolf Pack Predation is prone to fall into local optimal, a reverse learning strategy based on convex lens imaging is introduced to transform the current optimal individual and generate a series of new individuals with potential better solutions that are different from the original individual, helping the algorithm out of the local optimum dilemma. The comparative experimental results show that the average reprojection errors of the simulated annealing algorithm, Zhang’s calibration method, the sparrow search algorithm, the particle swarm optimization algorithm, bionic algorithm of Wolf Pack Predation, and the algorithm proposed in this paper (CLI-WPP) are 0.42986500, 0.28847656, 0.23543161, 0.219342495, 0.10637477, and 0.06615037, respectively. The results indicate that calibration accuracy, stability, and robustness are significantly improved with the optimization method based on the CLI-WPP, in comparison to the existing commonly used optimization algorithms.

Related Organizations
Keywords

reverse learning strategy, reprojection error, Chemical technology, optimization algorithm, TP1-1185, camera calibration, Article, CLI-WPP

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Green
gold