
In recent years, the classification of breast cancer has been the topic of interest in the field of Healthcare informatics, because it is the second main cause of cancer-related deaths in women. Breast cancer can be identified using a biopsy where tissue is removed and studied under microscope. The diagnosis is based on the qualification of the histopathologist, who will look for abnormal cells. However, if the histopathologist is not well-trained, this may lead to wrong diagnosis. With the recent advances in image processing and machine learning, there is an interest in attempting to develop a reliable pattern recognition based systems to improve the quality of diagnosis. In this paper, we compare two machine learning approaches for the automatic classification of breast cancer histology images into benign and malignant and into benign and malignant sub-classes. The first approach is based on the extraction of a set of handcrafted features encoded by two coding models (bag of words and locality constrained linear coding) and trained by support vector machines, while the second approach is based on the design of convolutional neural networks. We have also experimentally tested dataset augmentation techniques to enhance the accuracy of the convolutional neural network as well as “handcrafted features + convolutional neural network”and “convolutional neural network features + classifier”configurations. The results show convolutional neural networks outperformed the handcrafted feature based classifier, where we achieved accuracy between 96.15% and 98.33% for the binary classification and 83.31% and 88.23% for the multi-class classification.
Histology images, bag of words, locality constrained linear coding, convolutional neural networks, engineered features, Electrical engineering. Electronics. Nuclear engineering, TK1-9971
Histology images, bag of words, locality constrained linear coding, convolutional neural networks, engineered features, Electrical engineering. Electronics. Nuclear engineering, TK1-9971
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 295 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 0.1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 0.1% |
