
This study aims to solve the problem of deep destruction of organic pollutants in industrial effluents by creating new composite materials with prescribed functional properties. This paper researches the possibility of using composites based on a polypropylene fiber under conditions of photocatalytic degradation of organic pollutants in aqueous and aqueous-organic media. Dye that are water soluble (eosin, brilliant green, rhodamine C) and fat-soluble (blue, yellow and red) have been chosen as organic contaminants. Composites based on the polypropylene fiber have been obtained by introducing nanodispersed iron onto the surface of the initial polymer, using ion implantation and super high frequency irradiation methods. The obtained composites are characterized, and their photocatalytic activity is studied with respect to the pollutants under study in the conditions of the Fenton-like system and visible radiation. The results show that the obtained composite materials are effective catalysts for oxidative photodestruction of organic dyes in aqueous and aqueous-organic media, and their decolorization degree reaches 80–100%.
фентоноподобные системы, photocatalytic activity, Fenton-like system, visible radiation, dyes, композиционные материалы, decolorization, полипропиленовое волокно, видимое излучение, фотокаталитическая активность, polypropylene fiber, composite
фентоноподобные системы, photocatalytic activity, Fenton-like system, visible radiation, dyes, композиционные материалы, decolorization, полипропиленовое волокно, видимое излучение, фотокаталитическая активность, polypropylene fiber, composite
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 6 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
