Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Computers & Chemical...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Computers & Chemical Engineering
Article . 1996 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Logic-based MINLP algorithms for the optimal synthesis of process networks

Authors: Metin Türkay; Ignacio E. Grossmann;

Logic-based MINLP algorithms for the optimal synthesis of process networks

Abstract

Abstract In this paper, the MINLP problem for the optimal synthesis of process networks is modeled as a discrete optimization problem involving logic disjunctions with nonlinear equations and pure logic relations. The logic disjunctions allow the conditional modeling of equations (e.g. if a unit is selected, apply mass/heat balances; otherwise, set the flow variables to zero). It is first shown that this framework for representing discrete optimization problems greatly simplifies the step of modeling. The outer approximation algorithm is then used as a basis to derive a new logic-based OA solution method which naturally gives rise to NLP sub-problems that avoid zero flows and a disjunctive LP master problem. The initial NLP sub-problems, that provide linearizations for all the terms in the disjunctions, are selected through a set-covering problem for which we consider both the cases of disjunctive and conjunctive normal form logic. The master problem, on the other hand, is converted to mixed-integer form using a convex-hull representation. Furthermore, based on some interesting relations of outer approximation with generalized Benders decomposition, it is also shown that it is possible to derive a logic-based method for the latter algorithm. The proposed algorithm has been tested on several structural optimization problems, including a flowsheet example showing distinct advantages in robustness and computational efficiency when compared to standard MINLP models and algorithms.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    259
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
259
Top 1%
Top 1%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!