
Abstract In this paper, the MINLP problem for the optimal synthesis of process networks is modeled as a discrete optimization problem involving logic disjunctions with nonlinear equations and pure logic relations. The logic disjunctions allow the conditional modeling of equations (e.g. if a unit is selected, apply mass/heat balances; otherwise, set the flow variables to zero). It is first shown that this framework for representing discrete optimization problems greatly simplifies the step of modeling. The outer approximation algorithm is then used as a basis to derive a new logic-based OA solution method which naturally gives rise to NLP sub-problems that avoid zero flows and a disjunctive LP master problem. The initial NLP sub-problems, that provide linearizations for all the terms in the disjunctions, are selected through a set-covering problem for which we consider both the cases of disjunctive and conjunctive normal form logic. The master problem, on the other hand, is converted to mixed-integer form using a convex-hull representation. Furthermore, based on some interesting relations of outer approximation with generalized Benders decomposition, it is also shown that it is possible to derive a logic-based method for the latter algorithm. The proposed algorithm has been tested on several structural optimization problems, including a flowsheet example showing distinct advantages in robustness and computational efficiency when compared to standard MINLP models and algorithms.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 259 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
