Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Adaptive Gaussian mixture model and convolution autoencoder clustering for unsupervised seismic waveform analysis

Authors: Donglin Zhu; Jingbin Cui; Yan Li; Zhonghong Wan; Lei Li;

Adaptive Gaussian mixture model and convolution autoencoder clustering for unsupervised seismic waveform analysis

Abstract

Abstract Seismic facies analysis can effectively estimate reservoir properties, and seismic waveform clustering is a useful tool for facies analysis. We have developed a deep-learning-based clustering approach called the modified deep convolutional embedded clustering with adaptive Gaussian mixture model (AGMM-MDCEC) for seismic waveform clustering. Trainable feature extraction and clustering layers in AGMM-MDCEC are implemented using neural networks. We fuse the two independent processes of feature extraction and clustering, such that the extracted features are modified simultaneously with the results of clustering. We use a convolutional autoencoder for extracting features from seismic data and to reduce data redundancy in the algorithm. At the same time, weights of clustering network are fine-tuned through iteration to obtain state-of-the-art clustering results. We apply our new classification algorithm to a data volume acquired in western China to map architectural elements of a complex fluvial depositional system. Our method obtains superior results over those provided by traditional K-means, Gaussian mixture model, and some machine-learning methods, and it improves the mapping of the extent of the distributary system.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Top 10%
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!