Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://doi.org/10.5...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.5194/egusph...
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
Copernicus Publications
Other literature type . 2025
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Increasing emissions of HCFC-123 and HCFC-124 may be due to leakage during HFC-125 production

Authors: Luke M. Western; Stephen Bourguet; Molly Crotwell; Lei Hu; Paul B. Krummel; Hélène De Longueville; Alistair J. Mainning; +25 Authors

Increasing emissions of HCFC-123 and HCFC-124 may be due to leakage during HFC-125 production

Abstract

Abstract. Hydrochlorofluorocarbons (HCFCs) are ozone-depleting substances whose production and consumption have been phased out under the Montreal Protocol in non-Article 5 (mainly developed) countries and are currently being phased out in the rest of the world. Here, we focus on two HCFCs, HCFC-123 and HCFC-124, whose emissions are not decreasing globally in line with their phase out. We present the first measurement-derived estimates of global HCFC-123 emissions (1993–2023) and updated HCFC-124 emissions for 1978–2023. Around 5 Gg yr−1 of HCFC-123 and 3 Gg yr−1 of HCFC-124 were emitted in 2023. Both HCFC-123 and HCFC-124 are intermediates in the production of HFC-125, a non-ozone-depleting hydrofluorocarbon (HFC) that has replaced ozone-depleting substances in many applications. We show that it is possible that the observed global increase in HCFC-124 emissions could be entirely due to leakage from the production of HFC-125, provided that its leakage rate is around 1 % by mass of HFC-125 production. Global emissions of HCFC-123 have not decreased despite its phase-out of production under the Montreal Protocol, and its use in HFC-125 production may be a contributing factor to this. Emissions of HCFC-124 from western Europe, the USA and East Asia have not increased since 2015 and cannot explain the increase in the derived global emissions of HCFC-124. These findings add to the growing evidence that emissions of some ozone-depleting substances are increasing due to leakage and improper destruction during fluorochemical production.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
hybrid