
Abstract Clustering is pivotal in deciphering cellular heterogeneity in single-cell RNA sequencing (scRNA-seq) data. However, it suffers from several challenges in handling the high dimensionality and complexity of scRNA-seq data. Especially when employing graph neural networks (GNNs) for cell clustering, the dependencies between cells expand exponentially with the number of layers. This results in high computational complexity, negatively impacting the model’s training efficiency. To address these challenges, we propose a novel approach, called decoupled GNNs, based on multi-view contrastive learning (scDeGNN), for scRNA-seq data clustering. Firstly, this method constructs two adjacency matrices to generate distinct views, and trains them using decoupled GNNs to derive the initial cell feature representations. These representations are then refined through a multilayer perceptron and a contrastive learning layer, ensuring the consistency and discriminability of the learned features. Finally, the learned representations are fused and applied to the cell clustering task. Extensive experimental results on nine real scRNA-seq datasets from various organisms and tissues show that the proposed scDeGNN method significantly outperforms other state-of-the-art scRNA-seq data clustering algorithms across multiple evaluation metrics.
Machine Learning, Sequence Analysis, RNA, Problem Solving Protocol, Cluster Analysis, Humans, Computational Biology, Animals, Neural Networks, Computer, RNA-Seq, Single-Cell Analysis, Algorithms, Single-Cell Gene Expression Analysis
Machine Learning, Sequence Analysis, RNA, Problem Solving Protocol, Cluster Analysis, Humans, Computational Biology, Animals, Neural Networks, Computer, RNA-Seq, Single-Cell Analysis, Algorithms, Single-Cell Gene Expression Analysis
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
