
Symbolic-numerical algorithms for solving a boundary value problem (BVP) for the 2D Schrodinger equation with homogeneous third type boundary conditions to study the quantum tunneling model of a coupled pair of nonidentical ions are described. The Kantorovich reduction of the above problem with non-symmetric long-range potentials to the BVPs for sets of the second order ordinary differential equations (ODEs) is given by expanding solution over the one-parametric set of basis functions. Symbolic algorithms for evaluation of asymptotics of the basis functions, effective potentials, and linear independent solutions of the ODEs in the form of inverse power series of independent variable at large values are given by using appropriate etalon equations. Benchmark calculation of quantum tunneling problem of coupled pair of identical ions through Coulomb-like barrier is presented.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 13 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
